The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Moment hybnosti

Z Multimediaexpo.cz

Moment hybnosti je vektorová fyzikální veličina, která popisuje rotační pohyb tělesa. Moment hybnosti se určuje vzhledem k bodu nebo ose. Moment hybnosti bývá také označován jako kinetický moment, impulsmoment nebo točivost.

Obsah

Značení

  • Symbol veličiny: \(\mathbf{L}\) , někdy také b (vektor)
  • Základní jednotka SI: kilogram krát metr na druhou za sekundu, značka jednotky: kg.m2.s-1

Výpočet

Moment hybnosti (L), moment síly (τ=M), a hybnost(p).

Moment hybnosti \(\mathbf{L}\) je určen vektorovým součinem jako

\(\mathbf{L} = \mathbf{r}\times\mathbf{p}\),

kde \(\mathbf{r}\) je polohový vektor a \(\mathbf{p}\) je hybnost.

Vztah k momentu síly

Vyjdeme-li ze vztahu \(\mathbf{M} = \mathbf{r}\times\mathbf{F}\) pro moment síly, pak lze provést následující úpravu

\(\mathbf{M} = \mathbf{r}\times\mathbf{F} = \mathbf{r}\times\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\times m\mathbf{v}\right) + \left(\mathbf{r}\times\frac{\mathrm{d}(m\mathbf{v})}{\mathrm{d}t}\right) = \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{r}\times m\mathbf{v}) = \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t}\),

kde \(\mathbf{r}\) je polohový vektor, \(\mathbf{v}=\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\) je rychlost, \(m\) je hmotnost tělesa (hmotného bodu) pohybujícího se po kruhové dráze, \(\mathbf{M}\) je moment síly a \(\mathbf{L}\) je moment hybnosti, přičemž bylo využito skutečnosti, že vektorový součin \(\mathbf{v}\times m\mathbf{v}\) je roven nule (tj. můžeme tento výraz k rovnici bez obav přičíst - to je ten výraz   \(\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\times m\mathbf{v}\right)\)). Předchozí vztah lze slovně popsat tak, že změna momentu hybnosti vzhledem k pevnému bodu \(O\) je co do velikosti i směru rovna momentu síly (vzhledem k témuž bodu), který na hmotný bod působí. V soustavě hmotných bodů platí pro \(i\)-tý hmotný bod podle vztah \(\mathbf{M}_i=\frac{\mathrm{d}\mathbf{L}_i}{\mathrm{d}t}\). Z vlastností momentu síly pak plyne

\(\mathbf{M} = \sum_{i=1}^n \mathbf{M}_i = \sum_{i=1}^n \frac{\mathrm{d}\mathbf{L}_i}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i=1}^n \mathbf{L}_i = \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t}\),

kde \(\mathbf{L} = \sum_{i=1}^n \mathbf{L}_i\) představuje celkový moment hybnosti.

Vztah k plošné rychlosti

S využitím druhého Keplerova zákona lze vyjádřit vztah mezi plošnou rychlostí \(\mathbf{w}\) a momentem hybnosti jako

\(\mathbf{L} = 2m\mathbf{w}\)

Vztah k mometu setrvačnosti

Při kruhovém pohybu lze rychlost vyjádřit jako \(\mathbf{v} = \mathbf{\omega}\times\mathbf{r}\). Moment hybnosti soustavy \(n\) hmotných bodů vzhledem k těžišti lze pak vyjádřit vztahem

\(\mathbf{L} = \sum_{i=1}^n \left[\mathbf{r}_i\times m_i(\mathbf{\omega}\times\mathbf{r}_i)\right]\)

kde \(\mathbf{r}_i\) označuje polohu \(i\)-tého hmotného bodu s hmotností \(m_i\) vzhledem k těžišti a \(\mathbf{\omega}\) je úhlová rychlost pohybu tělesa kolem osy rotace jdoucí těžištěm. Použitím dvojitého vektorového součinu dostaneme

\(\mathbf{L} = \sum_{i=1}^n m_i\left[r_i^2\mathbf{\omega} - (\mathbf{\omega}\cdot\mathbf{r}_i)\mathbf{r}_i\right]\)

Točivost tělesa vzhledem k těžišti má tedy dvě složky. První má směr úhlové rychlosti, tedy směr osy rotace, druhá má ale jiný směr. Točivost tedy obecně nemá směr rotační osy. Označíme-li složky úhlové rychlosti \(\mathbf{\omega}\) vhledem k libovolné soustavě souřadnic s počátkem v těžišti a pevně spojené s tělesem jako \(\omega_x, \omega_y, \omega_z\) a složky průvodiče \(\mathbf{r}_i\) jako \(x_i, y_i, z_i\), můžeme předchozí vztah rozepsat do složek. Z vajádření momentu setrvačnosti \(J\) pak lze získat

\(L_x = \omega_x J_x - \omega_y D_{xy} - \omega_z D_{zx}\)
\(L_y = \omega_y J_y - \omega_z D_{yz} - \omega_x D_{xy}\)
\(L_z = \omega_z J_z - \omega_x D_{zx} - \omega_y D_{yz}\)

kde \(J_i\) jsou momenty setrvačnosti k \(i\)-té ose a \(D_{ij}\) jsou deviační momenty. Pokud vztáhneme složky točivosti k soustavě souřadnic totožné s hlavními osami centrálního elipsoidu setrvačnosti, deviační momenty vymizí, a složky točivosti vzhledem k hlavním osám budou

\(L_1 = J_1 \omega_1\)
\(L_2 = J_2 \omega_2\)
\(L_3 = J_3 \omega_3\)

Pokud se těleso otáčí kolem osy, která je totožná s jednou z hlavních os setrvačnosti nebo kolem pevné osy, jsou složky úhlové rychlosti k osám kolmým k rotační ose nulové a točivost lze zapsat jako

\(\mathbf{L} = J\mathbf{\omega}\)

Rotační impuls

Pro časový účinek momentu síly můžeme v analogii s impulsem síly získat vztah pro rotační impuls \(\mathbf{b}\)

\(\mathbf{L} - \mathbf{L}_0 = \int_{t_0}^t \mathbf{M}\mathrm{d}t = \mathbf{b}\)

Pokud je silový moment \(\mathbf{M}\) po celou dobu působení stálý, je možné předchozí výraz zjednodušit na tvar

\(\mathbf{L}-\mathbf{L}_0 = \mathbf{M}(t-t_0)\)

Vlastnosti

Moment hybnosti má při rotačním pohybu stejný význam jako hybnost při pohybu přímočarém. Pojem momentu hybnosti je analogický pojmu hybnosti: tak jako je hybnost součinem hmotnosti a rychlosti v případě translačního pohybu, tak je moment hybnosti součinem momentu setrvačnosti a úhlové rychlosti v případě rotačního pohybu.

Součet momentů hybnosti vnitřních sil

Součet momentů hybnosti vnitřních sil v tuhém tělese je roven nule, protože: 1. Dva body na sebe působí silou přitažlivou nebo odpudivou (tzn. má směr shodný se směrem jejich spojnice) 2. Působí-li bod A na bod B, pak bod B působí na bod A silou stejně velikou, ale opačně orientovanou Uvažme tedy vzoreček pro moment sil: \(\mathbf{M}_i\) je moment hybnosti \(i\)-tého bodu. Mezi \(i\)-tým a \(j\)-tým bodem působí síla \(\mathbf{F}_{i,j}=-\mathbf{F}_{j,i}\). Celkový moment hybnosti vnitřních sil je \(\sum \mathbf{M}_i=\sum_i \mathbf{r}_i \times \sum_j \mathbf{F}_{i,j}=\sum_i \sum_j \mathbf{r}_i\times \mathbf{F}_{i,j}\). Uvažujme nyní pouze interakci \(i\)-tého a \(j\)-tého bodu: \(\mathbf{r}_i \times \mathbf{F}_{i,j}+\mathbf{r}_j \times \mathbf{F}_{j,i}=\mathbf{r}_i \times \mathbf{F}_{i,j}-\mathbf{r}_j \times \mathbf{F}_{i,j}=(\mathbf{r}_i-\mathbf{r}_j) \times \mathbf{F}_{i,j}\), kde \(\mathbf{r}_i-\mathbf{r}_j\) je spojnice \(i\)-tého a \(j\)-tého bodu. Dle prvního předpokladu na sebe tyto body působí silou, která je s jejich spojnicí rovnoběžná. A jak známo, vektorový součin rovnoběžných vektorů je roven nule.

Moment hybnosti v kvantové mechanice

V kvantové mechanice je moment hybnosti vždy kvantován. Výsledkem měření jedné komponenty momentu hybnosti (impulsmomentu) můžou být pouze násobky redukované Planckovy konstanty. Kvantován je i kvadrát momentu hybnosti. Zcela novou vlastností je spin částic, vnitřní moment hybnosti určité částice. Na rozdíl od orbitálního impulsmomentu, který byl zmíněn výše může nabývat komponenta spinu i poločíselných hodnot. Při zavedení kvantového impulsmomentu vyjdeme z principu korespondence, kvantový impulsmoment je tedy definován takto: \(\mathbf{\hat{L}}=\mathbf{\hat{r}} \times {\hat{p}}\) Z komutačních relací pro souřadnici a impuls \([\hat{X}_k,\hat{P}_l]=i \hbar \delta_{kl}\) lze odvodit komutační relace pro impulsmoment: \([\hat{L}_k,\hat{L}_l]=i \hbar \varepsilon_{kln}\hat{L}_n\) Z těchto komutačních relací již plyne kvantování impulsmomentu. Pro vlastní vektory kvadrátu impulsmomentu a jeho třetí komponenty platí: \(\mathbf{\hat{L}^2}|lm\rangle=\hbar^2 l(l+1)|lm\rangle\) \(\hat{L}_3|lm\rangle=\hbar m |lm\rangle\) Kde l je nezáporné celé nebo polocelé číslo. Pro určitou hodnotu l může kvantové číslo m nabývat pouze hodnot -l,-l+1,...,l-1,l, tedy celkem 2l+1 hodnot.

Související články