V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Koeficient šikmosti

Z Multimediaexpo.cz

Verze z 14. 8. 2022, 14:52; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Koeficient šikmosti je charakteristika rozdělení náhodné veličiny, která popisuje jeho nesymetrii. Označuje se symbolem \(\gamma_1\).

Obsah

Definice

Koeficient šikmosti je definován jako

\(\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{\operatorname{E}[X-\operatorname{E}(X)]^3}{(\operatorname{var}\,X)^{3/2}}\),

kde \(\mu_3\) je třetí centrální moment, \(\sigma\) je směrodatná odchylka, \(\operatorname{E}(X)\) je střední hodnota a \(\operatorname{var}\,X\) je rozptyl.

Vlastnosti

Nulová šikmost značí, že hodnoty náhodné veličiny jsou rovnoměrně rozděleny vlevo a vpravo od střední hodnoty. Kladná šikmost značí, že vpravo od průměru se vyskytují odlehlejší hodnoty nežli vlevo (rozdělení má tzv. pravý ocas) a většina hodnot se nachází blízko vlevo od průměru. U záporné šikmosti je tomu naopak.

Symetrická rozdělení včetně normálního rozdělení mají šikmost nula.

Pro rozdělení s kladnou šikmostí obvykle platí, že jeho modus je menší nežli medián a ten je menší nežli střední hodnota. Pro zápornou šikmost opět naopak.

Výběrový koeficient šikmosti

Výběrový koeficient šikmosti je definován vzorcem

\(g_1 = \frac{m_3}{m_2^{3/2}} = \sqrt{n}\frac{\sum_{i=1}^n (x_i - \overline{x})^3}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 \right)^{\frac{3}{2}}}\),

kde \(\overline{x}\) je výběrový průměr, \(m_2\) je výběrový rozptyl a \(m_3\) je třetí výběrový centrální moment.

Tento odhad je vychýlený. Méně vychýlené odhady dostaneme, když místo výběrových centrálních momentů použijeme nevychýlené odhady centrálních momentů:[1]

\( \begin{align} G_1 = \frac{M_3}{M_2^{3/2}} &= \frac{\sqrt{n(n-1)}}{n-2}g_1 \\ b_1 = \frac{m_3}{M_2^{3/2}} &= \left(\frac{n-1}{n}\right)^{2/3}g_1 \end{align} \)

Pro rozptyly těchto odhadů platí \(\operatorname{var}\,b_1 < \operatorname{var}\,g_1 < \operatorname{var}\,G_1\).

Reference

  1. . Dostupné online.